Rainfall and Climate Variation over a Sloping New Mexico Plateau during the North American Monsoon

1996 ◽  
Vol 9 (12) ◽  
pp. 3432-3442 ◽  
Author(s):  
Brent M. Bowen
Ecohydrology ◽  
2008 ◽  
Vol 1 (3) ◽  
pp. 225-238 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Alex J. Rinehart ◽  
Luis A. Méndez-Barroso ◽  
Carlos A. Aragón ◽  
Gautam Bisht ◽  
...  

2012 ◽  
Vol 25 (12) ◽  
pp. 4220-4241 ◽  
Author(s):  
Nicole J. Schiffer ◽  
Stephen W. Nesbitt

Abstract This study uses an improved surge identification method to examine composites of 29 yr of surface observations and reanalysis data alongside 10 yr of satellite precipitation data to reveal connections between flow, thermodynamic parameters, and precipitation, both within and outside of the North American monsoon (NAM) region, associated with Gulf of California (GoC) moisture surges. The North American Regional Reanalysis (NARR), examined using composites of flow during all detected moisture surges at Yuma, Arizona, and so-called wet and dry surges (those producing anomalously high and low precipitation, respectively, over Arizona and New Mexico), show markedly different flow and moisture patterns that ultimately lead to the differing observed precipitation distributions in the region. Wet surges tend to be associated with moister precursor air masses over the southwestern United States, have a larger contribution of enhanced easterly cross–Sierra Madre Occidental (SMO) moisture transport, and tend to result from a transient cyclonic disturbance tracking across northern Mexico. Dry surges tend to be associated with a more southerly tracking disturbance, are associated with less convection over the SMO, and tend to be associated with a drier presurge air mass over Arizona and New Mexico.


1965 ◽  
Vol 97 (6) ◽  
pp. 561-580 ◽  
Author(s):  
Richard B. Selander

Abstract>Three species are recognized in the North American genus Megetra LeConte. The most distinctive of these anatomically and ecologically is M. cancellata (Brandt and Erichson), which ranges discontinuously from Arizona and New Mexico to the state of Hidalgo in México and occurs in limited sympatry with both of its congeners. Megetra vittata (LeConte) ranges from northern Arizona to western Texas. It appears to be strictly allopatric with, and similar ecologically to, M. punctata, new species, which ranges from southern Arizona and New Mexico to Durango, México. Specific diagnoses are made on the basis of characters of adult and, for M. cancellata and M. punctata, larval anatomy. Intraspecific variation in several adult characters is analyzed. Notes on the seasonal distribution, habitat, and behavior of the adult beetles are included.


2015 ◽  
Vol 15 (12) ◽  
pp. 6943-6958 ◽  
Author(s):  
E. Crosbie ◽  
J.-S. Youn ◽  
B. Balch ◽  
A. Wonaschütz ◽  
T. Shingler ◽  
...  

Abstract. A 2-year data set of measured CCN (cloud condensation nuclei) concentrations at 0.2 % supersaturation is combined with aerosol size distribution and aerosol composition data to probe the effects of aerosol number concentrations, size distribution and composition on CCN patterns. Data were collected over a period of 2 years (2012–2014) in central Tucson, Arizona: a significant urban area surrounded by a sparsely populated desert. Average CCN concentrations are typically lowest in spring (233 cm−3), highest in winter (430 cm−3) and have a secondary peak during the North American monsoon season (July to September; 372 cm−3). There is significant variability outside of seasonal patterns, with extreme concentrations (1 and 99 % levels) ranging from 56 to 1945 cm−3 as measured during the winter, the season with highest variability. Modeled CCN concentrations based on fixed chemical composition achieve better closure in winter, with size and number alone able to predict 82 % of the variance in CCN concentration. Changes in aerosol chemical composition are typically aligned with changes in size and aerosol number, such that hygroscopicity can be parameterized even though it is still variable. In summer, models based on fixed chemical composition explain at best only 41 % (pre-monsoon) and 36 % (monsoon) of the variance. This is attributed to the effects of secondary organic aerosol (SOA) production, the competition between new particle formation and condensational growth, the complex interaction of meteorology, regional and local emissions and multi-phase chemistry during the North American monsoon. Chemical composition is found to be an important factor for improving predictability in spring and on longer timescales in winter. Parameterized models typically exhibit improved predictive skill when there are strong relationships between CCN concentrations and the prevailing meteorology and dominant aerosol physicochemical processes, suggesting that similar findings could be possible in other locations with comparable climates and geography.


Sign in / Sign up

Export Citation Format

Share Document